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TECHNICAL TRANSLATION F-2_

SURFACE DISTURBANCES IN MAGNETOHYDRODYNAMICS*

By S. I. Syrovatskly

INTRODUCTION

The subject of magnetohydrodynRmics deals with the study of laws governing the motion of

electrically conducting liquid or gaseous media through an electromagnetic field. (For the study
of gaseous media the term "magneto-gasodynamics" is frequently employed. )

The classic equations of hydrodynamics and electrodynamics are used as a starting point in

the definition of magnetohydrodynamie laws. The interest in this field of studies arose only a

few years ago as a result of increasing availability of data on solar atmosphere processes and
also in connection with investigations on the origin of cosmte rays. Results of these Investiga-

tions led to the conclusion that extensive electromagnetic fields play an essential role in the dy-

namics of stellar atmospheres and in phenomena occurring In interstellar space. In the mean-

time many more phenomena have been observed whose interpretation requires the assumptinn of
the existenceof extensive cosmic magnetic fields. At the present time, the concept of such fields
is successfully employed in the explanations of the origins of cosmic radiation, polarization of

._ht of distant stars, etc.

Recent observations do not provide direct interstellar magnetic field data, and therefore all

conclusions are based on the general laws of motion of a conducting medium in an electromagnetic

field. Thus, it becomes necessary to develop a theory of magnetohydrodynamlc motion. More-

over, such a theory is indispensable for understanding motion in both stellar and solar atmos-

pheres. The latter, a highly conducting atmosphere, contains strong magnetic fields which sub-

stantially affect the character of magnetohydrodynamic motion.

The theory of magnetohydrodynamic motion may be formulated as a strictly theoretical prob-

lem, independent of its practical applications, and based on two divisions of physics, I.e. hydro-

dynamics and electrodynarnics. It appears that motion of a conducting fluid in a magnetic field

is characterized by a number of properties which are manifested the more distinctly, the more

conducting the fluid. It is known that magnetic fields cannot instantaneously penetrate or "e-

merge" from a conductor. This is due to the presence of induction currents which impede any

change of the field. In most applications of magnetohydrodynamlcs, the conductivity of the

medium is large and the currents are attenuated slowly; as a result of this, the magnetic field

appears to be "frozen" in the medium for prolonged periods of time. If, at the same time, the

medium is in hydrodynamic motion, then the field is deformed with the medium. The magnetic

flux through anysurface formed in the moving medium will, of course, be retained. The medium

in the magnetic field becomes actually anisotroplc, i.e. lateral motion does not cause any changes

in the field and occurs as in ordinary hydrodynamics. However, transverse motion causes de-

formation of the field with the accompanyingtransformation of the kinetic energy of the fluid into

magnetic energy, or vice versa. Such transformations evolve a number of new effects which are

_ot encountered in ordinary hydrodynamics.

Fundamental works in the field of magnetohydrodynamics are presented in Ref. [1]. Never-

`heless, due to the complexity of the system of magnetohydrodynamic equations, investigation of

.he dynamicsof conducting mediais very far from completion. In particular, serious difficulties

ire encountered in the solution of the fundamental problem of magnetohydrodynamic turbulence,
md hence there is an absence of a quantitative explanation of turbulence in a magnetic field. The

tbove discussion points out the imperative necessity for further investigation of the subject.

The present work is devoted to the study and explanation of characteristics of surface dis-

turbances in magnetohydrodynamics. Unusual "transient" disturbances are described. The

Latter exist during continuous transitions from one type of disturbance to another. Primary con-

sideration, however, is given to the problem of stability of tangential disturbances. The problem

is of considerable interest since it affords the possibility of explanation of stable and sharply

defined streams, in the form of jets, bands, etc., which are observed in the atmosphere of the
sun and which are difficult to explain in terms of ordinary hydrodynamics.

*Translation of "Nekotoryye svoystva poverkhnostey razryva v

magnitnoy gidrondinamike," a dissertation submitted for the degree of

Candidate of Physical and Mathematical Sciences and defended at the

P. N. Lebedev Institute of Physics of the Academy of Sciences of the

USSR, November 27, 1954. Originally published in Trudy Fizicheskogo

Instltuta Akademli Nauk SSSR (Transactions of the Institute of Physics

of the Academy of Sciences of the USSR), vol_ 8, 1956, pp. 13-64.
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In addition, investigation of the stability of tangential cisturbances is important for the de-

velopment of a quantitative explanation of the characteristic[- of magnetohydrodynamic turbulence.

Turbulent motion is developed as a resurt of instability oy laminar flow of a liquid or gas. In

fully developed turbulent flow, there exists a continuous transfer of energy Iroax larger to smaller
components of the stream. The energy is finally dissipate, t in the smallest eddies. Instability
of large eddies leads to their breakdown into smaller, also unstable eddies, which in turn break

down into even smaller vortices, etc. This process continues until the viscosity of the stream
prevents the occurrence of any further motion. From a theoretical point of view, the energy

transfer from larger to smaller stream components is described by the non-linear terms in hy-

drodynamic equations, i.e. those terms which cause the instability in laminar flow. Thus, flow

instability appears to be the determining factor in both the development and further course of
turbulence. It is therefore of interest to investigate the 3tability of motion in magnetohydro-

dynamics.

Tangential disturbances represent the limiting case of flow with a continuously changing

velocity gradient. The smoothing of the velocity profile results, of course, in the increase of

stability. Therefore, in order to establish the possibility of existence of unstable flow in magne-

tohydrodynamics, it is only natural to limit the investigation to a simple case of tangential dis-

turbance. Ouantitative explanation of the stabilizing action of the magnetic field as contained in

this solution has a number of advantages, such as simplicity and minimum number of assump-
tions. Those were absent in the work of previous investigators(Refs. [2] and [3]), who studied

flow stability between rotating cylinders and between parallel planes using the method of asymp-

totic theory of stability with many limiting assumptions. Moreover, an approach similar to the

method presented herein may be extended to the case of a c, Jmpressible medium which is of par-

ticular importance for practical applications.

The results obtained in Sections 5 and 6, below, verify that a sufficiently strong magnetic

field stabilizes tangential disturbances in both compressible and incompressible media. Min-
imum values of the stabilizing field are determined in or_ier of importance by densities of the

magnetic and kinetic energies with respect to the moving medium. This represents one of the
essential distinctions from ordinary hydrodynamics, where _angential disturbances are absolutely

unstable. As applied to the theory of magnetohydrodynami.: turbulence, the result shows that in

the presenceof a magnetic field, normal turbulent ener_, transfer is disrupted under all degrees
of turbulence. The average kinetic energyof the stream may beequal to or less than the average

energy of the stabilizing magnetic field. Therefore, extensi m of the theoretical method of locally
isotropic turbulence to magnetohydrodynamic turbulence, as attempted in Refs. [4]-[6]), re-

quires additional substantiation.

The stability of tangential disturbances and solutions of steady state magnetohydrodynamic

equations, as presented in Section 9, indicate the possibility of existence of stable flow of the

medium along an arbitrary magnetic field. Such flow, characterized by individual streams or

jets, should under normal conditions become turbulent within a short period of time. This result
is utilized in Section 10 in the interpretation of some ch_ racteristics of motion of solar pro-

tuberances.

F
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SECTION I. MAGNETOHYDRODYNAMIC EQUATIONS

The liquid or gaseous medium is considered to be cq_ntinuous, i.e. it is assumed that the

mean free path Z of particles of the medium is considerably smaller than the characteristic

dimension L of the phenomenon:

l
-L- _ 1. (1)



Therefore,hydrodynamic equations may be used to describe motion of the medium.
equations have to be modified by the volumetric electromagnetic force fe :

These

(2)

Op
_--T + div _v = O, (3)
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where v = velocity of medium,

p = density of medium,

t9 = pressure,
-_ = viscosity,

= secondary coefficient of viscosity.

The force/_, expresses the action of the electromagnetic field on the charge and current of the
medium:

I [JIll,re= _eE'+" c--w- (4)

where Pe = density of electric charge,

j -- current density,
E = vector of electric field,

H = vector of magnetic field,

c' = velocity of light.

The electromagnetic field is determinedby the Maxwell equations and depends upon the charge

and current of the moving medium (p. = 1, s = const):

rotH---- T- £ + - or '

I ¢?H
rot E = c' at '

divH =0,

div E : 4,_

(5)

It is assumed that Ohm's law can be applied, and thus the current density will be equal to:

i [vHl) C6)

The first term of the above corresponds to the convection current and the second to the

t [vH]. Con-conduction current, since the charges in the field are acted upon by E' = E + c---r

ductivity o is considered to be a constant scalar quantity. The above assumption is correct
if the radius of curvature /_ of the trajectory of electrons in the magnetic field is longer than

mUC e

the mean free path of the electrons Le • Since R----- e_ , where u = thermal velocity of

electrons, then the conductivity may be considered isotropic, if:

_¢* M, P



where eolq = Larmor frequency,
= average time of free path of electrons.

When the above condition cannot be satisfied, as occurs with a highly rarefied medium in a

strong magnetic field, then the conductivity may be considered anistropic (Refs. [7] and [8]);

i.e. the value of conductivity will not change along the fielc, while it will decrease across the

field 1 + _z_ times. By elimination of j and E from equations (5) and (6), we obtain:

0_ e 4ha a div [vH]. (8)
O--/- + div p,v = -- --7- Pe -- c--r

Equation (8) shows that relaxation time of the charge is in the order of e / a . The following
condition is considered to be fulfilled here:

4_o L
_v >> l, (9)

where V = characteristic velocity of the medium.

F

2

3

Condition (9) permits the convection and displacement currents to be neglected in comparison
with the conducting currents 1 - which is usual in the study oi electromagnetic processes in con-

ducting media. Substituting equation (9) in equations (8) and 15), we get:

Pe =--_-_-dlv _-H ; (10)

C"

d = _-_ rot H. (11)

Substitution in equation (6) yields:

E _ Dm
c' v___d

The second term in parentheses is in the same order of magnitude as the quantity v2/c '2,

in comparison with the first term. Since macroscopic veloc.ties of the medium, even in cosmic

conditions, are small in comparison with the velocity of ligat, an accurate non-relativistic ap-

proximation can be employed by neglecting terms having the .rder of magnitude ofv _ ] c '2 . Here,

1 C s

[rill + 4--_- rot Jr. (12)_7_-- ¢'-'7-

Also, the same approximation can be used in equation (4). _.'hus, using equation (11) yields:

I [rot H.HI. (13)

1High frequency electromagnetic processes, for which to _ a/e, are not considered here.



Using above assumptions, the system of equations for a liquid of high conductivity in an

electromagnetic field assumes the following form:

_H" c 'z

a--Y-- rot [vHI = -- WH"

0v 1 i
a---/-+ (vV) v -- 0 Vp -- _ [H- rot H] +

+ __V2v+ 1(_ ._)P _- + grad div v:

3p
3_-A-divpv=0: divH=0.

(14)
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The system of equations(14)does not contain terms describing charge density, current den-

sity, and intensity of the electric field. These may be determined from equations (10) to (12).

Thus, the dynamics of a conducting medium in an electromagnetic field can be full_' determined
by interaction between the magnetic and the velocity fields which is expressed by equations

(14). For this reason, the term "magnetohydrodynamics" has been adopted to describe this

phenomenon.

In cases where the compressibility of the medium cannot be neglected, equations (14) have

to be augmented by the following equation of the state of the medium:

p = p (¢, T) (is)

Equations (14) and (15) contain two vector and two scalar equations for the quantities

v, H, p, p, T and must be augmented by another equation. The additional equation expresses
the law of conservation of energy in the system. Since the total energy of a unit volume of the

medium is equal to:

01,, l /-]_

T + P_ + "-g_-=, (is)

where e = the thermal energy of the unit mass, then the equation of the conservation of energy

will assume the following form:

dt \ 2 -it-P_ -_-'8-_-'_ = --divg. (17)

The energy density g consists of the following terms: density of hydrodynamic energy flux

pv (v2/2 -4- w),where w = the thermal functionof unit mass of electromagnetic energy flux, which
C'

is expressed by the Umov-Poynting vector _ [EH] ; the energy flux - (va'),associated with
the processes of internal friction, where

, t" Ovt bvlt

%t = _t'_-_k + Ox I
2 _ik avl _ Ovl (18)

(equation (18) represents the "viscous" tensor of intensity); and finally the thermal flux _ ×VT,

where x = coefficient of thermal conductivity. Thus:

l.lll ) ¢tg = ff -2- + to + _ [EHI -- (w') -- ,,VT.
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Substituting equation (12) for the energy term, we get:

where

(vl ) t 0 {H r(t HI -- (vo') -- _VT,g = pv T + w + -_ [ H [v H ]I -- --_ (19)

C'2

- 4.° • (2o)

The third term of the right-hand side of equation (19) expresses the energy flux associated with
the thermal and electrical losses.

Equation (17) may be transformed by the use of equations (14) into a heat transfer equation:

(21)

F

2

3

where S = the entropy per unit mass. This equation sho_s that the change of quantity of heat in
a moving element of volume (dQ --- _T dS) is determined b) viscosity, energy losses, and thermal
conductivity.

The investigated system acts according to the lawof cc,nservation of matter (3)and the law of

conservation of impulse, which may be described according to equations (14) and (18) as follows:

Opv_ _i_

o--7------- 0x---_- ' (22)

where the tensor of impulse flux density is

t //H i _ ) ,Wik -_- P_ik "_- pvivk "_- _ _'-_ uik -- /rtHk -- oik. (23)

Thus, equations (14) and (21) describe the macroscopic motion of the conducting medium in
an electromagnetic field, and assume the absence of conve:tion and displacement currents. The

latter assumption is true for electromagnetic processes in a highly conductive medium. The

conditions of application of magnetohydrodynamlc equatiozs are expressed by inequalities (1),
(7), and (9).

It follows from equations (14)that the influence of visc)sity is characterized, as in ordinary

hydrodynamics, by the Reynolds number R = pV.___L(wheze p, V, and L are characteristic for

a given problem and describe the density, velocity, and linear dimension of the system). The
relative function of dissipation of the magnetic field due to energy losses may be expressed by

the following number Rm 4naLV---- c,---T--, which represents the magnetic analogue of the Reynolds num-

ber. The studies of Ref. [9] show that in most astrophys_ cal applications of magnetohydrody-
namtcs, the values of 1_ and R,n are so high that the terms for viscous dissipation and electric

losses in the medium may be neglected in equations of motmn without any loss of accuracy; i.e.

the medium can be considered an ideal liquid with an infinite conductivity.



For an ideal medium the system of equations will be expressed:

OH
a--T= rot [vHI;

div H -- 0;

av 1 t

at +(vV) v- P Vp -- _ [H rot l[] ;

0@
7 -4- div pv = O;

OS
a-F + vVS = 0.

(24)

It is assumed that the equation of state of the medium is known.

It is convenient to describe equations (24) in the form of laws of conservation:

Jpv t 0nik

Ot Ox k

O..O_{Or, + + H2 \
ot \ 2 9_ -g_-_ ] = -- div g;

09
ot -- -- div pv;

OH
aV = ro! [vH]"

div H = O,

(25)

where

I { 112 _ --'Hill_)

g=pv T+w +We

(26)

(27)

The first three equations in equations (25) express the laws of conservation of impulse, en-

ergy, and mass respectively. The fourth equation expresses the laws of conservation of magnetic

field in a "fluid" surface that is moving together with the medium. Actually, the change of the
flow of vector /-[ through such a surface is determined by expression (10):

d

(8) (S)

where the integration is made along the liquid surface. Thus, according to equations (25),

It d8 = 0. (28)
(s)

The above relationship is characteristic for magnetohydrodynamics by depicting the force

lines of the magnetic field contained in the medium. The number of those lines in anarldtrarily

moving fluid particle will, however, remain unchanged.



SECTION2. CLASSIFICATIONOFMAGNETOHYDRODYNAMICDISTURBANCES

As in ordinaryhydrodynamics,the magnetohydrodyl.amicequationsfor an idealmedium
(',}= _ ---× = 0. a :-- oc) allow discontinuous solutions, where velocity, tension, or intensity

of the magnetic field and other surface quantities experience step changes. In order to establish

the conditions which would satisfy the solution on such surfaces, it is simple to use the laws of

conservation expressed by equations (25).

A system of coordinates is chosen where the investigated element ot a surface disturbance
is immobile:

Let n = the vector of the normal to the surface disturb.race, and

-: = an arbritrary vector in the tangential plane.

It follows directly from equations (25)that the following bomdary conditions have to be satisfied:

{Tr_n_} ---- I), {g,} =]0[; {p_}:0;}{IvH]_/=o; { ,,}: .
(29)

In condition equations (29) and hereafter, the braces will denote the difference of quantities con-

rained therein on both sides of the surface disturbance. The meaning of conditions (29) is evi-

dent: the first three express the continuity of momentum, energy and mass fluxes; the next two

represent simple electrodynamic conditions of continuity of tangential and normal components of

the electric and magnetic fields, respectively. Therefor(, with o = oc from equation (12), it
follows that:

1
E -- , [vH]. (30)

If the x axis of the coordinate system is directed tlong the normal to the surface, then

boundary equations (29) can be written as:

{ (r"- ' ! } (31)pz'__,-_-+ u.) ÷ 7,.=.[IF-r_.-- (vii) I.'A -- O;

{_.x} : O: {l/x} = O;

{v_H_--r_tl_) = O: {v_ll_--v_H_} = O.

Axes y and z. were selected as two independent direction_; of the vector T .

In ordinary hydrodynamics there are possible two mutually exclusive types of disturbances:

tangential and normal (shock wave). A continuous transition between these two types is impos-

sible. Therefore, during perturbation of surface distuJbances, their classification will not

change and, as in ordinary hydrodynamics, will have real )hysical significance. The character-

istic features of magnetohydrodynamic disturbances are given below. With a continuous change of

the conditions of motion, any surface disturbance allowable by equations (31)can be transformed

into any other type, as will be shown later. Therefore, the type of classification of disturbances

used in ordinary hydrodynamics cannot be employed here. All disturbances are interrelated by

transitions and, in this sense, form one general type. Nevertheless, for the purpose of exped-

iency, a conditional classification of magnetohydrodynarric disturbances is presented. This

classification basically corresponds to the classification iatroduced in Ref. [11], which in turn

is based on external indications in the vicinity of the distulbance.
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Tangential disturbance. Analogous with ordinary hydrodynamics, surface disturbances with

an absence of normal component of velocity are included in this category, thus:

v_ - 0. (32)

If the normal component of field Hx differs from zero, then, according to equation (31), the

velocity, pressure, and magnetic field should be continuous. Such disturbance represents stable

boundary between two different media. It is assumed that

H_ = o. (33)

In this case the magnetic field and velocity are parallel to the surface of the disturbance and

according to conditions (31)can undergo arbitrary changes of both magnitude and direction.

Step changes of pressure should be related to step changes of the intensity of magnetic field by

the following condition:

,.,
Conditions (32) to (34) fully characterize the magnetohydrodynamic tangential surface disturbance.

Such surface disturbances are possible in incompressible as well as compressible media.

Perpendicular shock wave. Disturbances for which:

v_¢:0, H_=0, (35)

are classified as perpendicular shock waves. It follows from equations (31) that the tangential

component of velocity is continuous, or:

{v_} = O, {vz} = O, (36)

and that the tangential component of field intensity satisfies the following conditions:

{vxH_} = O, {vxH,} -: O. (37)

Conditions (36) and (37) permit the transformation to a system of coordinates where both sides
of the disturbance are:

v_=O, v_=O, H_=0. (38)

In this system of coordinates, and from conditions (31), (35), and (38), the boundary equations

for a perpendicular shock wave will have the following limits (vx -----v, Hu -----H):
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Surface disturbance of this type represents a longitucinal shock wave whose direction of

propagation is perpendicular to the direction of the magnetic field as shown in Figure 1. With

H= O, this is a simple shock wave. With //t 0, the magnetic field is diminishing the compres-

sibility of the medium and correspondingly enlarges the velocity of propagation of the surface
disturbance. The latter was listed in Refs. [12] and [13].

%!

I
I

vz

I
I

P
l

Fig. 1. Longitudinal shock wave.

The first of conditions (39) expresses the "attachment" of the magnetic field to the matter

of the medium: the quantity H/_ is preserved. The remaining equations will have the form

, H s , H _

and will assume the form of simple equations for shock waxes, where the energy and pressure
depend upon the intensity of the field according to formulae (40). As shown by Kaplan and
Stanyukovich, Ref. [14], the problem of arbitrary unidim_,nsional magnetohydrodynamic flow

through a perpendicular field can be reduced to a simple hydrodynamic problem with correspond-

ing changes in the equation of state. In particular, this pert _ins to a perpendicular wave.

For the investigation of disturbances with

Vx=/= O and Hx =l_ O , (41)

it is convenient to use a system of coordinates where the ve:tors v and H are parallel on one

side of the disturbance. When conditions (41) are satisfied, this is always possible. Actually it

is sufficient to change to a system of coordinates whose origin moves parallel to the surface dis-

turbance with the following velocity:

_X

]V=V--'_x/'[. (42)

The above equations hold true in cases where v and H are eq'lal to the velocity and intensity of the

field in the original system of coordinates. It follows from boundary equations (31) that in this

system of coordinates, vectors v and g will also be paraltel on the other side of the disturb-

ance. By indexing the two sidesof the disturbance by numbers 1 and 2 where (x _ 0 and x_ 0 ,

respectively), the condition may be written as:

vz =q1I£1, vz=q2H2, (43)



where qt and q2 are coefficients of proportionality. In the selected system of coordinates, the
lines of flow of the liquid (gas) are parallel to the magnetic force lines and undergo similar
changes and breaks on the surface of the disturbance. It should be noted that for a perpendicular
shock wave, and also in general cases of tangential disturbances, the selection of a coordinate
system where the motion takes place according to conditions (43) is impossible.

With conditions (41) and (43), the boundary equations (31) assume the following form:

F
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'/.: +-:,--0;
H:H,} O;{Ov_v_--_---_H,_H_}=O; {Ov,,v,---_-d- _ =

{pv_} =0; {H_}=O.

(44)

From the above equations and relationships (43), the following equations may be formed:

{_q} = 0; (45)

{(l t v =4,_q_) v}=O; {(1 4_)vz} O. (46)

Equations (44) and equations (45) and (46) assume two different types of motion depending on
whether there exists a continuity or a step-change of the density of the medium on the surface of
the disturbance.

Magnetohydrodynamic wave. It is assumed that despite conditions (41) the following condi-
tion of continuity of density is true:

{9} --_ 0. (47)

Equations (44) and (45) and condition (46) lead to the continuity of the normal velocity component
and of the coefficient of proportionality q between vectors of the magnetic field and velocity:

{v,}=o; {q}=O.

Equations (46) may be reduced as follows:

(48)

(q'--4=-_-_-){vy} =Oi (q'-- 4-_-){v,} = O.

If at least one of the quantities {vt,} or {v:} is other than zero, then:

1
q = -t--- (49)

Otherwise, in accordance with equations (43), (47), and (48), disturbance will be formed. Thus,
in magnetohydrodynamic waves, the velocity vector is related to the magnetic field vector by the
following relationships:

Vl=+ 1 t---_n,, v_= +_n_. (50)



In accordance with equations (44), (47), and (48), the following boundary equations will be satis-
fied on the surface:

{v_}=0; {H_}=0;]
(51)f(s} = 0; (p} = 0;

{p+ + = o, (52)

the expression w = e + p/p is used here as the thermal ft_nction per unit mass of the medium.

In accordance with conditions (51) and (52), the followiag note should be made. Since the

density and internal energy of the medium is equal on both .-{ides of the disturbance, then other

thermodynamic quantities,such as pressure, should also be equal. This means that for a medium

with a unique equation of state the following two conditions w:ll have to be satisfied:

{p} : O, (h'_ --}- H_} : I), (53)

i.e. the surface disturbance, despite continuity of all thermodynamic quantities, can be charac-

terized by conditions (50) and by the continuity of normal components and absolute quantities of

velocity and intensity of the magnetic field. With known values of H 1 (and thus v_ ), there are

possible values of H2 (and thus v 2 ) which are located on a surface of a cone, the resultant of

which forms an anglewith the normal equal to the angleof obliquity of vector /-/, . The charac-
ter of the motion in such a disturbance is shown on Figure 2.

F

2

3

Y

Z

Fig. 2. Magnetohydrodynamic wave.

In Ref. [11], an analogous surface disturbance for a relativistic problem was called a

"Symmetric Shock Wave".

In cases of incompressible fluids, where thermodynamic correspondences are not con-

sidered, conditions (53) do not follow from boundary equaticns. Tangential components of field

intensity and correspondingvelocities may undergo arbitrary step changes related to step changes

of pressure by equation (52). This means that in an incompressible liquid, minute changes of

density and internal energy may lead to finite changes il: pressure. Therefore, conditions

{_} = 0 and {e} = 0 may be considered satisfied when the :;tep-change of pressure is different
from zero and balances the difference of magnetic intensi:y on both sides of the surface dis-

turbance.



SURFACE DISTURBANCES IN MAGNETOHYDRODYNAMICS

2

3.

The velocity of propagation of magnetohydrodynamic waves is determined directly by expres-

sions (50): since the normal component of velocity is continuous and equal to vn = -4- /-/n/4V_ ,

then relatively to the medium the surface disturbance is propagated with the velocity -_- H,_/V-_p.

The chief characteristic of magnetohydrodynamic waves is the possibility of transmission

of a tangential momentum to the medium. This is due to the fact that the motion in general cases

is not planar. The solution to the problem of magnetohydrodynamic waves was first obtained by

Ref. [7].

Inclined shock wave. Disturbances of this type, despite conditions (41), are characterized

by the presence of step-change in density:

{p}=ko. (54)

In addition the motion should be unidirectional, i.e. a transition to a system of coordinates may

be made where the motion takes place in surfaces (x, y) and

vl_-----0, H_----0, v_=0, H_z=0. (55)

Rotation of the coordinate system about its x axis to give v_z = 0, and therefore //1_ = 0, can

always be made. According to conditions (46), either v2z = 0 or H2z = 0 leads directly to con-

ditions (55), since

i t

q_= 4,_p,, q,_:/=_. (s6)

(Simultaneous equations qS -- l and q_ = i
4_pz _ are incompatible with conditions(45)and(54)).

It follows from the last case of equations (46) that vl_ = 0 and, therefore, H_v- = 0, i.e. on one

side of the disturbance the tangential components of velocity and field intensity are generally

absent and the system of coordinates has to be selected so as to make v2, = 0 and H2_ = 0.

In the selected system of coordinates according to conditions (55), the motion is charac-
terized as shown on Figure 3, and the boundary equations (44) may be brought to the following:

H_| r vs/ /

(57)

Y

Fig. 3. Inclined shock wave.



In disturbances of this type, the shock wave interacts in a complicated manner with the

magnetic field. The propagation velocity of an inclined sh,_ck wave depends not only on the de-
gree of compressibility, but also on the direction and magnitude of the magnetic field. The de-

pendence between parameters which determine the state of tae medium prior to and after passing
of the shock wave was shown in Refs. [12] and [13].

In particular, when Hv = 0 on both sides of the disturbance, and therefore vy = 0, i.e. the

disturbance is propagated along the magnetic field, the lattt:r does not influence the propagation

of the shock wave. This "parallel" shock wave may be described by simple hydrodynamic

equations:

For a disturbance which follows the condition shown in equation(56), the system of equations

(44) may be reduced to the following:

H2_ }*v

VII / = 0; Hli / = 0; /32y = s_ -_,_-zz ;

{w+_}=0; {,v.}=0; {H_}=0;

_2P2
p, + _,_v_,_= P2 + p2v_ + 2 '

(59)

F
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and the flow is characterized as shown in Figure 4. One side of the surface, the tangential

components of magnetic field and velocity are absent and too:ion takes place in the same manner

as in a parallel shock wave. On the other side of the disturbance, motion is characterized by a

magnetohydrodynamic wave, where there is a possibility crl :he existence of arbitrary tangential

components of the magnetic field and velocity.

Among the described surface disturbances, there is an absence of flow of matter through the

surface, and therefore those are tangential surface disturb:=nces. Conversely, in disturbances

of the three following types, matter is transferred throug_ the surface or the disturbance is
propagated relatively to the medium. Therefore, such distt rbances are called waves of one or

another type. The velocity of propagation in the limiting case of disturbances of low intensity,

i.e. in a case analogous to the propagation of sound waves :n ordinary hydrodynamics, may be
fou/ld in Refs. [153 to [17].

It was shown that in an incompressible medium there are only two types of disturbances

possible: namely, the tangential and the magnetohydrodynan:ic wave.

/

Fig. 4. Disturbance accordin[: to:

q2_ 1 1
_- 4--_,' q_:# 4 nl_t



SECTION 3. TRANSIENT DISTURBANCES 15

It can now be shown that in magnetohydrodynamics, transitions of surface disturbances of
one type into disturbances of another type are possible. It is sufficient to establish that there

are disturbances (called "transition" disturbances) that may be simultaneously classified in two

different types. Therefore, with the relatively small change of parameters, a change from one

to another neighboring type may occur. The transient disturbances may be found by direct com-

parison of the boundary equations which relate disturbances of two types. The values of parame-

ters, where the boundary conditions for two different types of disturbances correspond to each

other may determine the transition between two types. The possibility of the existence of a con-

tinuous transition between disturbances of two types will be investigated below.

Comparing conditions (32) to (34) with conditions (36) and (39) it is found that for a contin-

uous transition from a tangential disturbance to a perpendicular shock wave it is necessary to

have a disturbance that is characterized by continuous velocity and the following conditions:

=o, + =o,

i.e. the disturbance affects only the thermodynamic quantities and the tangential component of

the field intensity.

Such a disturbance, however, is impossible. The above conditi._ns require the continuity of three

independent functions of the three variables Hu, p and 9 . This means that the above variables

should be the same on both sides of the disturbance, i.e. the discontinuity is not present. Thus,

direct transition between a tangential disturbance and a perpendicular shock wave is impossible.

Comparison of equations (32) to (34) with conditions (50)to (52) shows that the disturbance satis-

fies the following conditions:

{_}=0, {0}.=0, }

_ +_.L. t
{_} -_ _ {x}.

(60a)

The above applies to the transition between a tangential and a magnetohydrodynamic wave. As

noted, in a compressible medium, with pressure as a unique function of density and internal

energy, equations (60a) are equivalent to the following:

v_=O; H_=O; {q=O; {o}=O;_ {p}--O;}{H_ + H_} = O; (,'}= _+ _ (HI.
(60b)

Thus, a continuous transition between a tangential disturbance and a magnetohydrodynamic wave

in an incompressible medium is possible if conditions (60a) are satisfied. For a compressible

medium, the same applies to conditions (60b).

In an inclined shock wave, the motion is planar and therefore the transition to it is possible

only from a planar tangential disturbance (vz = O, Hz = 0). Here, the condition of parallelism

of vectors v and H does not determine the coordinate system whichwas used for an inclined

shock wave [see equations (32), (33), and (42)]. Direct application of the original boundary con-

ditions, as shown in equations (31), must be made. These equations may be written as follows:



p+pv[ + 8_l=

+ w + _-_/=

The above relationships must be fulfilled in an inchned shock wave up to and including

pvz =0and Hx= 0. Excluding the latter, it will be found from the above three equations that
limiting relationships which have to be satisfied for a transition between a tangential an inclined

shock-wave are (assuming that vz = 0 and Hz = 0):

v.=H_=0; + 8_l=

{_W = ! [H,I4_l o /{H_};

4.o / {H_} = (v_H_} {v,},

(61)

F
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It is easy to show that direct transition between a perF_ndicular shock wave and a magneto-

hydrodynamic wave is impossible. Such transition could t _ke place only when p = 0, but condi-

tions (39) show that in such a state disturbance cannot exisl.

The transition between perpendicular and inclined sl:ock waves is always possible. Such

transition will be caused by the appearance or disappearance of the normal component of field

intensity. Thus, the perpendicular shock wave is simply a singular case of inclined shock wave.

The separation of these two types of waves into differen: categories may be justified by the

simplicity of the perpendicular shock wave and by the fact that in the case of a perpendicular
shock wave it is impossible to introduce a special coordinste system, where vectors v and H

are parallel as in equation (43) and which is characteristic for inclined waves.

Finally the inclined shock wave, where the step-change of density approaches zero, changes

into a planar magnetohydrodynamic wave. Since the plaJmr magnetohydrodynamic wave, in a
compressible medium, should satisfy the condition {Hi} =0, then either Hv =Hu2 or

H_l =- H_,. In the first case all quantities are conti_uous and there is an absence of dis-
continuity.

Therefore, the transition discontinuity between incline:l and magnetohydrodynamic waves is

represented by a planar "symmetrical" discontinuity (shcwn in Figure 5) which satisfies con-

ditions (51) and (53):

{vx}=0; (H_}=0; {_}=0; {p}=0; {p}=0;]

v=-q- tt . H_,=--,_m. I (62)
_'

In this all quantities are continuous with the exception of the tangential components of field and

velocity. The latter change their direction on the surface )f the disturbance.

In an incompressible liquid there are possible only two types of disturbances: tangential and

magnetohydrodynamic wave. Figure 6 shows the possibl_ transitions between disturbances of

different types.



3A 17

Y

Fig. 5. Planar symmetrical disturbance.

Tangential
disturbance

(61)

(60a)

Inclined

shock wave

I
Perpendicular

wave

Magnetohydrodynamic
wave

(62)

Arrows indicate the direction of transition. Numbers in parentheses
indicate conditions which have to be satisfied during the transient.

Fig. 6. Possible transitions among disturbances of different types.

SECTION 4. PERTURBATIONS OF SURFACE DISTURBANCES

Boundary equations are derived to satisfy small perturbations of steady state surface dis-

turbances. Assume that a steady state surface disturbance, where x -----0 , assumes the follow-

ing form as a result of perturbation:

_(x, y, z, t)_x--_(y, z, t)=0. (63)

A new set of coordinates is introduced, at an arbitrary point y, z of this surface. This new

system moves parallel to the origin along the x axis together with the arbitrary point on the

surface. Velocity and intensity of the magnetic field will be expressed in the new system by the

following relationships:

_ " (64)
v" =v--i-_, H =H,
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where i is the only vector of the x axis. In this system o coordinates, the element of the sur-
face is immobile (rotation of a small segment of the surface may be neglected) and the boundary

conditions will assume the following form [refer to equation (29)]:

{ i!'n} = 0; {pv'l_} = U; {g'"} = ('; I
I

{7:iknk} = 0; {lv'.tI'} ":j} = 0; {[V'II'] %,} = 0 IIjHI .r : _. /
(65)

In the above equations r.:k and tj ° are expressed by v* anv /-/" in an ordinary manner accord-

ing to formulae (26) and (27). Since the normal to the pertt rbed surface equals:

II := V¢]) =- l, _!! , ,): ,

and the following may be taken as the two independent tange;lts

":'l= -5_' 1,0,

then equation (6,5) may be rewritten as:

{z:-.; w

o_

{. 0 }=0
{,,,'.',. +,,,'H'].} -_o

{[,,'H'i. + = C

(66)

when x m _.

Referring to the original system of coordinates accord ng to equation (64), boundary equa-

tions for an arbitrarily deformed surface are easily obtaine¢:.

It is further assumed that perturbation of the original steady state motion and corresponding sur-

face is small. In other words, the perturbation may be described by the following quantities:

v+v', H+h, p+p', e+p',... (67)

where tt, ./-/, p and p are characteristic for steady state motion and satisfy boundary equa-
tions (31) on the surface when x =0, and v', It, p' and p' are small perturbations which may

be neglected. Since the shift of the surface _ is a quantity ol the same order of magnitude as the

perturbation, then boundary conditions maybe applied to a plane where x ---- 0 instead of x = _.

Using assumptions from equations (64) and (66) and substitution of expressions (67) and (31), the

following system of boundary conditions for perturbations m_.y be derived:
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{h,J-= 0; (po',,+ p'v,J= o;

+ w q- _ pv,,. -- -_ _ Hx(vh "b Hv') "-k

p' + p v_ + pvxvT + pu,,u,, .q- _ =

pv_,v,, + p'v_v=, + po_, v_, + vx -_ -- _ =

_,,v',,,+ p v,ox + pv_ vz + v,_ _- -- _ =

I

{v_h,, -- H_v'. -- v_h_ + v_H_,} = O;

{v,h. -- H,v',,-- v_h. + v;H_} = 0

(68)

when x = 0. In the above equations

, , a{ a_ a{ .

hn==h __H v O__--Hz-_a_ ,

(69)

denote normal components of perturbations of velocity and intensity of the magnetic field.

Equations (68), applicable to surface disturbances of various types, permit determination of
transitions by different means than were used in the previous section. Perturbations of a tan-
gential disturbance are investigated below as an example. The results of this investigation are
further used in the study of stability of a tangential disturbance with relation to small perturba-
tions. In the case of a tangential disturbance, the steady state motion satisfies conditions (32)
to (34):

{ H,}vx=0, H_=0, p-+-_ ----0, (70)

and the system of boundary equations (6) may be reduced to the following:

t

(h,} = 0; {pv,} = 0;

I (H_h v + H,h,)} = 0;{P'+

H_ , I (vg) h, t=0:

pv_v. -- _ H_h,_ = O; v,v',, -- _ H_h,, -----O;

t I

{v_h. -- Huv. } = O; {v,h,_ -- H_v,_} = O.

Since the quantities hn and pv_ are continuous, the last five equations may be rewritten:

(71)

+w+ _ or.= W

(vv}ov. = _-= {Hv} h.; OV_ = {u_} h.;

{Vz} pv. = W {H.} h.; or. = {v.} h..

(72)
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When parameters of a nonperturbed surface are known, the system of equations (72) contains five
equations for two unknown quantities pv,t and/7,t • Since the system is over-determined, only a
trivial solution is possible: hn = 0 and pvn = 0 . Thus. in the general case of arbitrary
v,/_and p , the tangential disturbance with small t'erturbations will conserve its form, and
boundary equations will assume the following form:

v. _ vx -- -of -- vu _-s -- r: _ = O;

o_ _H_°_ =0;
h" _ hx -- Hu -b_ -_z

t (Huh _ + H=h_)} = O.19'+

(73)

However, with some special values of the parameters of a z onperturbed disturbance of equation
(72), there are possible some nontrivial solutions for I% and vs. The values of these par-
ameters characterize the transition disturbance, since even a small perturbation may cause
a tangential disturbance to change into another type. Ind_ed, a disturbance where I_=0or
vn =f=0 cannot be classified in the tangential type. Equat:ons (72) permit the solution where
hn _ 0, but where vn =/=0 , the original disturbance will satisfy the following conditions:

--0
(74)

As shown in Section 3, the above discontinuity is thermodynamically possible.

If in the original tangential disturbance

{0]= o, (75)
p

then equations (72) permit ha and vn to be different from zero if:

{v,} =-I-4_np {H_); {vz} = q-_ 4t--_p {Hz}. (76)

The above shows that a coordinate system may be selectee in such a manner as to satisfy the
following equation on both sides of the surface:

H
v = -q- 4V-_nnp" (77)

From conditions (71) and (72) it follows that:

wq-_ =0 and {e}-_(. (78)

Such a disturbance [refer to equation (60a)-] is the transition between a tangential and magneto-
hydrodynamic wave. The perturbation of such a disturbance will satisfy the conditions:

(79)

and

F
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It follows from the above that even an arbitrarily small normal component of the field intensity
will change the disturbance into a magnetohydrodynamic wave. Finally, if in the original tan-
gential disturbance

{p}=_=0, (81)

then equations (72)willpermit a nontrivialsolutionfor _. and v'.ina case where the motion is

planar, i.e.

v,=0, H_=0 (82)

and the following conditions exist:

}
{vv}2 = _ {Hv};

(83)

Indeed;with the selectionofthe coordinate system where v_ _ 0 and vz, -_- 0 , itwillbe found
t

from (72) that with hn =]=0 and v,_ _ 0 :

{ t=0
The above and condition (81) lead to equation (82). Excluding hn and pJn from the remaining
equations (72), we get equations (83). The disturbance, determined by conditions (70) and (81) to
(83) as shown in Section 3, is the transition between a tangential and an inclined shock wave.
From equations (71) and (72) for small perturbations of such a disturbance:

and

{ '{pv.)=0, {h.}=0, p'+_H_ =0 (84)

, (Hvl.
pv. = _ h_. (88)

Itis convenientto transform equations (83)to a system c[ coordinateswhere:

H, (v) H2 (_,J"
i,'I -_

In such a system of coordinates, conditions(70)anci(83)willassume the followingform:

, ,f n,, t }

{vv}2= "_-/-'p--I {Hi};
(87)

It also follows from equations (85) and (86) that:

t #

r'i' rl_-mLand v,,, viii (88)
= H,, _ = H,---_ '

i.e. the motion takes place along the force lines. This means that the discontinuity changes into
a inclined shock wave, and the coordinate system (86) corresponds to the system of coordinates
(43).
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Thus, the investigation of perturbed limiting equatio:m leads to the same results in relation-

ship to transitions as direct comparison of limiting equations does for disturbances of different
types.

It may be noted that the existence of transition distuz bances does not mean that the motion is

unstable in the sense of transfer of energy from the basi,: to the perturbed motion. According to
expressions (80) and (85), only a small perturbance will ,'.hange the disturbance from a transition
form to another type.

SECTION 5. STABILITY OF A TANGENTL_L DISTURBANCE IN AN

INCOMPRESSIBLE MEDIUM

In the case of an incompressible medium ( p

following quantity for the intensity of the magnetic field:

H

• (89)

The system of magnetohydrodynamic equations (24) will then assume the following form:

o,_a_- (uV) v -- (vV) u; ]

,_--_+ (vV) v = V p + + u; (9o)p

divv = O; div u = O.

= con,,tant), it is convenient to introduce the

A solution corresponding to a tangential disturbance can be selected as the original steady

state solution for the system of equations (90). The behavior of this solution during small per-

turbations is investigated. Let the motion be described be the following quantities:

v+v', u + u', p-_- p', (91)

where v, t_ and p (where indices 1 or 2 correspond to t le investigated side of the surface) de-

pend upon both the coordinates and time and satisfy cond tions (32) to (34) for a tangential dis-

turbance. In addition, v', u'- 1t' p,
and are quantities which characterize a small per-

turbation. Substituting expressions (91) in equations (90_ and, neglecting small quantities, the
following system of equations will be found for the perturt ations:

a,,'at - (uV) v' -- (vV) ;i'; }
_v' i
at -_- (vV) v' -- V (p' -_- putt') -_- (uV) u'" (92)p

divv'-----0; divtt'=O.

The solution to the system of equations (92) on each side of the surface, where x ---- 0, is
found by superposition of waves:

i (kr--et)
e , (93)

where k = (ks, k_, kz) • The components of vector

k 6 ---- (0, ku, k=) (94)

should be real, since otherwise the solution of equation (93) will reach infinity along the y or
= axes. For perturbations that depend upon coordinates and time according to equation (93),

equations (92) will be reduced to the following:



25

(oJ-- kov) u' = -- (kou) v",

(o_-- koV) v' 1 ,.= -_ (p' + puu') k -- (kou) u,

kv' = O; ku' = O.

(95)

It is considered in the above that Yx ---- 0 and Hx = 0 . Second equation multiplied by k leads
to the condition:

k 2 (p' + p uu') = O.

It follows from the above thateither p' -}- puu' -._ 0 , or k S _- 0 .

ing equation for ¢o may be derived from equations (95):

(co- kov) 2 -- ( kou) 2 = O.

(96)

In the first case, the follow-

(97)

The roots for the above are real. Since the instability may be

values of co, the following will be assumed:
represented only by complex

k 2 ---: 0; kx = -4-iko. (98)

The sign of kx is chosen from boundary conditions of perturbations removed from the dis-

turbance; i.e. minus in the region 1 (with x _ 0 )and plus in region 2 (with x _ 0 ). It follows
from equations (95):

l)' -- _- k°¢'
ko u it', (99)

p (_ _ ko,j}2_ (koU)2 u_.
P' -k-puu' -- kx koU (100)

Equations (99)and (100)are combined on the surface of a tangential disturbance for regions whei'e

x _ 0 and x_ 0, by means of boundary conditions (73). For solutions of the type of equation

(93), these equations may be reduced to the following:

t

u:, -- i (kouO f = 0; ]

u'x,-- i (kou2) _ = 0;

{p" + p uu'} =0;

(101)

when x = 0. The last equation demands that the quantities k o and o_ be continuous. The above

and equation (100) lead to the following condition:

Pl --((° _ kovl)2koul__(k°ul)2 U'x, = -- P2 (co -- kov2) 2kouj-(k°u2)2 U_,: (102)

The condition that kx, = --kx, is utilizedhere, and it is assumed that in ageneral case, densities

p_ and P2 are different on both sides of the disturbance. Excluding quantities _, u_, and ux, ,

and from equations (101) and (102), an equation may be found which determines possible values
of ca:

Hence
p, (¢o-- kov_)2 + p_(¢o-- kov_P -- p_(koU_P -- p, (koU2P = O.

(.D -- {p, (kov,) -t- 02 (kov2) +

-4- V (Pt + O_) [e_ (kou_) 2 + O_ (k0u2)2] - 9,Pz [k0 (v2 -- v012}.

(103)

(104)
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Therefore, it follows that with the condition

toI (koul)z .}_ p2(koU2)2 __ P_P2 tko (v2--v,)12_O, (105)
Pi -t-"Pz

one of the roots of co has a positive imaginary part, i e. there are solutions to equation (93)

which are exponential with respect to time. This denotes the instability of the original tangential

disturbance. In cases where condition (105) is not fulfilled, the original disturbance will be
stable.

Denoting the step-change of velocity in the disturbance by:

Vo ---- v2 -- *)1 (106)

and according to formula (89) it may be found that the t_gential disturbance is stable in relation

to the wave vector k o , if:

(k0Hl) 2 -}- (koH2) 2 4,_p,p_ (kovo)" >i O. (lO7)
Pl + P2

It is apparent from the above that the magnetic field will always introduce a positive correc-

tion to the left side of the inequality, i.e. it will exert a stabilizing action on the motion. Con-

dition (107) does not depend upon the absolute value of the vector ]co. With non-parallel values

of //1, H2 and v 0 it depends upon the direction of the vector ]c 0.The condition of stability of
a disturbance in all possible perturbations is determined by the minimum values of the left side

of inequality (107). In cases where the y axis of the .'oordinate system is directed along the
step-change of velocity, then:

(Hu_H"--Hz'HY')2 P'P' Vo2>/- O. (108)

The above shows that the contribution of the magnetic fieldis always positive with the excep-
tion of the case where vectors //1 and //2 have a direction which does not correspond to the

direction of the step-change of velocity. In this case, fr(,m condition(107), there exists a region

of such directions of the wave vector ko, where the co.'responding disturbances are unstable.

The motion with non-parallel values of // and v is generally unstable, since a deformation of

the magnetic field takes place. Of great interest is the cise where the magnetic field is parallel

to the step-change of velocity, i.e. where motion takes place along the field. In this case the

motion may be stable in an arbitrary field as shown in Section 9. If //'1. ]'/a and Vo are
parallel, then condition (107) for all perturbations will at sume the following form:

(109)

If, however, the magnetic field and density of the mediu_ are the same on both sides of the sur-
face, then condition (109) will reduce to the following:

2
H 2 l Pro
8--_ _j 4 2 (110)

Since H2/81r is the density of magnetic energy, and fv_/2 is the density of kinetic energy,

then condition (110) will mean that stability of a tangential disturbance along the magnetic field

will take place when the magnetic energy of the medium becomes comparable with its kinetic

energy.



An investigationanalogousto theaboveshowsthatmagnetohydrodynamicwaves,inanin-
compressiblemedium,arealwaysstableto small perturbations.In particular,thetransition
betweena tangentialdisturbance and amagnetohydrodynamic wave will be stable. The latter may

be proved if conditions (107) are combined with equations (75) and (77), which characterize such

transitions. The condition of stability will then assume the following form:

(koUl + koU2) 2 >_ 0 (111)

and, of course, the above conditions will always be fulfilled. A small perturbation of a transient

disturbance will remain small during the subsequent period.

F
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SECTION 6. STABILITY OF TANGENTIAL DISTURBANCES IN A COMPRESSIBLE MEDIUM

//

Using the same nomenclature as in previous sections and denoting by u -- _ , v, p, p

the constant quantities, and also neglecting small quantities, the following equations will be

derived from the system of equations (24):

011_ °

o-7- -t- (vV) u' = -- u div v' -t- (uV) v';

Or' 1 ,.
ot + (vV) v' = -- _- Vp' -- v (uu') + (uV) u,

0p' ,.
at q- vVp' = -- p div v,

divu'=O; p' = dp'.

(112)

For perturbations, whose dependence upon coordinates and time has the form

system may be reduced to the following algebraic equations:

(to -- kv) u' + (ku) v' -- (kv') u = 0;
ell t

(¢o -- kv) v' -- (uu') k -F (ku) u' -- -_- p k = 0;

(co-- kv) p' -- p (kv') = O;

(ku') = O.

e i (kr - tot) this

(113)

It is convenient for further consideration to denote:

_o=_--kv (114)

where _oo is the frequency in the coordinate system in whichthe medium is stationary, and equa-
tions (113) can now be rewritten as:

OOoU'+ (ku)v'--%u p- = O;
p

6°o2 p '

(ku) u' -I- ¢OoV'-- -D- k -- = 0;

(uu') = °°2°-- k2c_ p' •
k = p '

(ku') = o.

(I_5)



It may be noted that due to the parallel form of vectors u and V in the plane of the tangential
disturbance where x = 0 , the vector k 0 ---- (0, k_, kz) will enter into expressions ku and kv

only with its real components. Neglecting the known steady state solutions with real values of
co, which satisfy the equation:

to_-- (kou) z = 0, (116)

it is found from the first two equations of the system (115) that:

v'= _° _k--k2(kou) u

pk-.W _--(kou) 2 p'; (117)

u' = --_ kSu -- (kou) k p,.
ok' _- (ko-)' (118)

Substituting the above in the third equation of the system (i15), the following condition of corre-
spondence will be found:

" -- (c_ + u2) ks_ + k_c2(koup = O.coO

The above determines too as a function of the wave vector k,:

(119)

%_= T c_ + u2 + (c_ + uS) ' -- 4=' (ko_,)" ]
-- k* J"

(120)

It follows from equation (120) that real values of k correspond to the real values of k_:, since
the values of k_ and kz are always real. Therefore, the st, ,ady state harmonics will also corre-

spond to the real value of to o . Thus, instability may be ca ised only by those perturbations for

which Im(k_) =f=0, and:

). =- ikx. (121)

The perturbation will be limited at a distance from the dis urbance, if the following conditions
are fulfilled:

Re (),_) _ 0; Re 0',) _ 0.

Here ),_ and L_ relate to the regions where x _0 and _0 respectively.
(119) we get:

(122)

From equation

(¢' + .') .: -- c' (_..:'
(123)

Boundary equations (73) have to be fulfilled on the surhce of a tangential disturbance.
perturbances of the investigated type, equation (73) will be 2 educed to:

i

v_+i(_--kov)_=O; /

u_ -- i (ko_) _ = O;

{p' + _uu'} = O.

For

(124)

The first two conditions, according to equations (117) and (==18), correspond to each other, and

therefore it is sufficient to limit the solution by the two last equations. Excluding _, the condi-

tions may be written as:
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c2_1+ _lulul = c2_ + _u2u_. (126)

Excluding by means of equation (118) the values of u' and p', it will be found that:

kl )'z

9] [,o_,- (koU])21 92[,_- (kou,)q
(127)

Substitutmg equations (114) and (123) in the above, and assuming that conditions (122) apply, the
following equation may be arrived at, which determines the possible values of c0:

/ (_ -- k0vL)4- + - - (ko,,,)'
91 [1¢o-- ko_,,)z -- (kou_f]

92 [(_ -- ko'r2) 2 -- (koU2) 2]

(128)

From the two possible values of each of the above radicals, the one which is positive should be

selected. Thus, the investigation of the stability of a tangential disturbance in a compressible

medium will be reduced to the investigation of roots of equation (128). For some values of the

parameters

Ul; "1_2; 1P)O='_J2--Vl; 91; P2; Cl; C2, (129)

equation (128) will not yield roots of co having a positive real part for any value of k 0 The tan-

gential disturbance, which is characterized by such values of parameters (129), will be stable in

relationship to any perturbations. In a converse case, there will exist infinitely small perturba-
tions that will result in instability.

In the limiting case where c_ ---, oo and c 2 ---* oo, which corresponds toan incompressible

liquid, equation (128) may be reduced to equation (103). On the other hand, with H l = 0 and

//s = 0, i.e. during the absence of a magnetic field, a problem of simple hydrodynamics, re-
ferring to the stability of tangential disturbances in a compressible medium (Ref. [18]), will

result.

With arbitrary values of parameters (129), the general investigation of the roots of equation

(128) is made difficult by the fact that in this equation, only strictly determined parts of the rad-

icals must be selected. The solution of equation (128) leads to an algebraic expression contain-

ing tenth powers of co. This operation, however, leads to the formation of additional roots that

do not satisfy the original equation. Therefore, each squared root of the equation should be

checked as to its pertinence to the original equation. Only the most interesting cases of distur-

bances will be dealt with here, i.e.., those disturbances where the motion of the medium takes

place along a magnetic field and where the following vectors are parallel:

U 1, U2, V l and V2. (130)

By defining

A

v -_ COS (ICo,iS) (131)



as the cosine of the angle between the direction of wave vector ]CO and the general direction of
vectors (130), equation (128) may be written:

p, --v,_ --u,*i

(132)

In the above, all real parts of the radicals are assumec to be positive. Investigation is made

of the form of the imaginary roots of the above equation wih _---_0. Equation (132) with _ ---_ 0 ,
despite the existence of a multiple root to----0, contains only two simple real roots. Since in

equations with real coefficients the transition from a real root to an imaginary root is possible
only through a multiple root, then the imaginary roots of equation (132), if present, should go to
zero together with v. With small values of v , this permits us to neglect the second term under
the radical sign. Then t0 will be determined by the following equation:

(133)

The roots of the above equation are either real or imaginary depending whether the following
condition is fulfilled:

The above condition corresponds to condition (109), _-Jhich was arrived at for an analogous

problem in an incompressible liquid. Thus, with small values of _,i.e. for perturbations for
which the wave vector makes a large angle with the direction of the step-change of velocity, the
compressibility of the medium is not important. The abcve result is physically apparent. In-
deed, the behavior of perturbation depends only upon the pr)jection of the step-change of velocity
upon the directlonof the wave vector of perturbation, and n)t upon the absolute value of the step-
change of velocity. With sufficiently large angles, the ab)ve projection is quite small in com-

parison with the velocity of sound, so that the medium beh:.ves in an incompressible manner.

The above result permits us to conclude that for dislurbances (130) the compressibility of
the medium does not lead to contraction of the region of instability in comparison with an incom-

pressible medium. In cases where some values of the _arameters cause an instability of the
tangential disturbance in an incompressible medium, theJL in an analogous situation in a com-
pressible medium an unstable condition will also prevail. _Iowever, in an incompressible medi-
um, the non-fulfillment of condition (134) will lead to inst:_bility of any perturbation; whereas in

a compressible medium the disturbance appears to be stabl_ in relation to some parts of the per-
turbations (not with small values of v ). The above does not generally produce instability of the
disturbances.

The case of arbitrary values of v will now be investigated. The compressibility of the med-

ium is of importance here. For disturbances in which the density of the medium, velocity of

sound, and intensity of the field on both sides are equal:
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Pi =02-_P, cl :c2-_c, ul = u2_---u. (135)

It is convenient to utilize a "symmetrical" system of coordinates, where

v° v-A-° (136)
VI_ 2 ' V2_--" 2

and v 0 is the magnitude of the step-change of velocity in the disturbance. Denoting

YA_o (137)o_ u and 0 = 2c '
W -_ ko c , _ _ c

equation (132) may be rewritten as:

+
.__.____ (i + ,.') (w + _v)' -- _v s

(w + fly)' -- _=

It follows from

Hs P_°2 or,

i -- (I + _') (w -- pvp -- _'vl ( i38)

conditions (133) that when v--*O the stable condition will assume the form of

in terms of equation (137),

,v_p. (139)

The region of stability can now be determined by the use of equation(138) when v = 1. This
corresponds to "lengthwise" perturbations, which are propagated along the step-change in veloc-
ity. Equation (138) can now be reduced to the simple form:

2_, = 0. (140)
w" -- 2 (t + p_) w_ + p' - 2_ + _ +_,

The multiplier, which corresponds to the following real roots, was omitted:

"W= 0 and w = -4- (_-+-_). (141)

The roots of equation (140) are

_/_ V I ---' (142)w=± _+_2_+_+ 4_-_ t+_"

whence it follows that imaginary roots are possible for two regions of parameters 0c and _ as
shown in Figure 7.

a) t -- _'
t + 4'-' > (i-- p2)z. (143)

This region corresponds to purely imaginary values of w, and the transition from real to imag-
inary values of the latter, with a continuous change of _ and _ goes through the value of

¢_2__ I

b) =_ + 1 > 4_2" (144)

In this region, the real part of w differsfrom zero, and the change from itsreal to imaginary

values goes through a multiple root thatis not equal tozero.

The conditionthatdetermines region"a" inthe limitingcases where c--_oQ and H--0 leads

to known conditionsof instabilityfor an incompressible medium: H' pvs ;while for a com-

pressible medium without a magnetic field:vo_2 V2-C. Thus, condition (143) represents a

genera] case for a compressible medium ina magnetic field.
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Regions of imaginary roots of equation (140) (shaded areas).

Condition "b", however, leads to an unexpected conclusion, namely, that in very strong

fields even a small disturbance in velocity causes instability. Moreover, squaring of both sides
of the equation for w leads to the appearance of additional roots which do not satisfy the original

equation. These roots correspond to unlimited solutions with x ------4- oQ and should be neglected.

The investigation of the roots of equation (142) in region 'b" shows that such roots are not nec-

essary, since they do not satisfy equation (138). Thus, the region of instability of the disturb-

ances for longitudinal perturbations is determined by cond.tion (143).

Two limiting cases are considered: ,--_ 0 and v _ J. In both cases the boundary of the un-

stable region corresponds to zero values of w . In this c-'_e, the symmetrical system of coor-

dinates is employed, where both positive and negative r)ots of w are present, as follows di-

rectly from equation (138). During the transition from the stable to the unstable region, the
value of w 2 changes from positive, through zero on the _oundary, to negative in the region of

instability. Here the values of w are either real or purely imaginary. Thus, the boundaries of

stability are denoted by curves for which the value of W2 changes its sign.

The change from real to imaginary values could take place through a multiple root which is

other than zero, since in the unstable region both the real and imaginary parts of w = w r + /we

would be different from zero. Such a condition would de rote an instability of oscillations with

growing amplitude, the dependence of which on time would be:

e_i t COS OJrL.

However, in all investigated cases, instability of thi_ type appears to be impossible. (In-
stability of this type is sometimes called "super-stability".) It occurs in the problem on thermal
convection as described in Refs. [19] and [20]. It will be further assumed that with intermedi-

ate values of _ , between v = 0 and , ---- i , such instabi]ity does not appear. Thus, it will be

assumed that with intermediate values of _ , the boundaiy between regions of stability and in-

stability (a. 6) may be only such curves for which w 2 ch;xLges its sign. Equation (140) can be

reduced to the following algebraic equation:

Cow8 + c,w 6 ÷ c,,v2 + c3 w2 + c, = O, (145)

where coefficients c are algebraic functions of the parameters =, _ and v. In particular, the

constant c4 is:

c, = (=, -- _,) {[2 (i -- (32)24- v2(2 -- i32)p2l=' --

-- I_'[4(_ -- F2)+ _' (t + 132)]=2 + 2p' -- y2p,}.
(146)
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In cases wherethe constant c( becomes zero, then equation (145) will contain a root w s ---- 0.
In cases where the constant changes its sign by transition through the value of zero, then the
value of w_ will also change its sign, and consequently there will exist pairs of real roots which
will be transformed into a pair of complex and purely imaginary roots. In the latter case, when
the constant equals zero with afixed value of _ , a curve will be determined which will form the
boundary of the region of stability. The maximum region in the plane (o:, _) bounded by such
curves represents the region of instability of the original tangential disturbance. This region
will be investigated.

Equating expression (146) to zero, we get:

(147a)
and

-- 82{4(1 -- 82) 4- v2_2(1 + _)] a2 + 26' -- v2_6 = 0.
(147b)

Equation (147b) has the following roots:

a2_: 4(1--_2)+_2_2(t+_2)±_2Y_2184-Ct--_2)2]-- 8
2 [z (1 -- p2), + _p2 (2 -- _)1

_. (148)

Equation (148) determines the real curve only for the case when

8
_2 _ 8 4- (1 -- _2)2 (149)

for each value of v , two intervals of the values of _ de-The above condition determines,
termined by expression (148):

and

_2 _ I -{- 2Vf2 ( v-_V-- 1) . (151)

Interval (150)permits the existence of real values of _ only when the condition 8/9 _ _2 _ 1
exists. In the region where _2 _ 1 , and with _2 ( 8/9 , there is only one line (147a) that serves
as the boundary of the stability region. Interval (151) with _--_ 0 leads to infinity. In this case,
with all finite values of _ _ t the boundary of the stability region will also be determined by line
(147a). Thus, with small values of _ , the previously determined condition (139) may be used.

However, the _ _ | curve, determined by equation (148), merges with line (139) and curve
(143). Indeed, with _ __--I , the constant of (146) will assume the following form:

(_' -- p)' [(1 + _') (t -- p)' -- (l -- _*)l. (15_.)

Therefore, on the straight line ¢¢---- _ , the change of u_ to zero will take place without chang-
ing of signs, and the following curve will form the boundary for the stability region:

(l -{- 0_2) (t -- _2)2 __ (t __ _'.,) __ 0, (153)

which is in concurrence with condition (32).

Thus, with the change of "_ from zero to plus one, a continuous deformation of the boundary
of the stability region takes place as determined by equation (148), between two end conditions
(139) and (153). For all values of _ , curves (148) are limited on the left side _/1 by line
(139), and with _ _ 1 , by curve (153). Therefore, the complete region of instability is also
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limited by the same equations. Those disturbances whose parameters are outside of this region
are stable in relationship to even infinitely small perturbations.

The boundary of the stable region of tangential disturbances of velocity in a compressible
medium is shown on plane (_,_) of Figure 8. It is evident that the boundary of the stability region

differs only slightly from the line _ -----_. According to equations (137), H2 1 pv2 and the cri-_-- _--y,
terion of stability of a tangential disturbance of velocit) _ in a compressible medium remains
quantitatively the same as for an incompressible medium il accordance with equation (110). That
is the disturbance is stable if the magnetic energy flux is comparable to the kinetic energy flux
in relationship to the motion of the medium.

Therefore, in compressible as well as incompressible conducting media, a longitudinal mag-
netic field stabilizes the motion if its energy is comparable to the kinetic energy of this motion.

i/

I/_,tx,'_"t

i,cit__f-"_" M ', "- .

Fig. 8. Region of instability of tangential cisturbances of velocity
in compressible medium (shad_.d areas).

SECTION 7. THE STRUCTURE OF DISTURBANCES

Until now disturbances were considered as mathematic al surfaces upon which the parameters
that characterize motion of the medium undergo a disruptLon of continuity. In reality, the vis-
cosity, thermal conductivity, and limited conductivity of the medium cause the surface to rep-
resent a region of rapid but continuous change of these l)arameters. The thickness of such a
region is called the width of the disturbance. For detelmination of this width in equations of
motion, the dissipation terms have to be taken into accomit. These terms have been neglected
until now.

An investigation of a planar steady state disturbance that is parallel to the plane x = 0 and

is homogeneous along the coordinates l/ and z, \-_- = 0, -----0 shall now be made. Mag-

netohydrodynamic equations (14), (17), and (22) for one-dimensional steady state motion will as-
sume the following form by integration with respect to _ :
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dH v
v,,Hv -- vuH_ -- _ _ = const,;

dH z
v,H,, -- v,,H_ + (3---_ = const;

H_ = const; Ov_ = const;

P+OV_+_-- _q+_ -_z =c°nst;

1 H d%
OV_V_-- -_-=H_ y --_-_'z = const;

I dvt
pv_v, -- T_ H_H_ -- _ _ = const;

(" H4-_0) t (vH)H_ fl dH_Ov_ -g-+w+ ---Ud 8_t dz

(154)

The above equations describe the motion of the medium in the disturbance, The integration
of the right hand side of equations (154) is determined from the following conditions: all quart-

tries far from the disturbance and on either side of it do not depend on x _ = 0 , and are

known on side 1 (z d0) andon side 2 (x _ 0) Also in accordance with equations(154), the quan-
tities should be determined by relationships which correspond to general boundary equations (131)
on the surface of the disturbance.

For a tangential disturbance (vx = 0, Hx = 0) , equations (154) determine the following:

dt_ dtt
n_-_ =0, _-=0 (155)

(since all quantities far from the disturbance do not depend upon x, it is assumed that the con-
stant is equal to zero). These conditions denote that the viscosity (7 5/= 0) and the limited con-
ductivity of the medium (_ =/=0) prevent the occurrence of a steady state tangential disturbance
of velocity and of magnetic fiel& thus, the disturbance disappears as time goes on. The dis-
appearance of the disturbance is determined by simple diffusion equations. Therefore, the re-
lationship of the velocity of disappearance of the disturbance _/I: (where 8 is the width of the
disturbance and • is the duration of its existence) to the characteristic velocity of the flow V is
inversely proportional to the Reynolds number Pt:

8 v I
,W _W =-g - ,

in cases where the disappearance of a tangential disturbance of velocity occurs as a result of the
action of viscosity _ = _/p ; or the Reynolds number R,_:

*V _- R,,_ '

in cases where the disappearance of a disturbance of magnetic field results from the limited
conductivity of the medium.

As shown, the numbers R and R,_ are very large in the majority of astrophysical ap-
plications and thus disappearance of a tangential disturbance may be neglected. Although a
steady state tangential disturbance is not possible, the above concept may be widely used in
astrophysics.
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For the case of inclined shock waves and parallel shock waves ( v_, vz, Hv, H z are each zero),

equations (154) are reduced to ordinary hydrodynamic equations of one-dimensional steady state
motion. In this case, the magnetic field does not exert any L-_fluenceupon the motion of the med-

ium. In particular, the width of a shock wave of low intensity is determined by.expression (21):

[-: ('
Pz -- P1 ' cs % cp '

_ap_ )S

where V = I/p isthe specific volume, and c_ and cp arethe specific heats of the medium. Thus,
considering dissipation terms in the equations of motion, the motion along the field takes p/ace in
the same manner as in ordinary hydrodynamics. In all remalmng cases, the character of motion

(including the width of the disturbance) actually depends upon the intensity of the magnetic field.
The width of a perpendicular shock wave of low intensity is taken as an example. The perpendic-

ular shock wave can be conveniently investigated in a systen= of coordinates where the quantities
_x = v and H v = H differ from zero. The system of equa;ions (154) can now be reduced to the

following equations:

dH
vH -- _ _ = v_H_:

pv ----/ = PW1;

H' (4 )dr _ /It=P+PV2 +_-- -_q+_ _ =pl+Ftzfi + 8_ ; (157)

(_.) _, (4 ) dv pdH'pv -_ + w +y-g v-- -y ,q + _ v dx 8, dx

--x_=ptvl +wl +_v_

F

2

3

Here, i is the flow flux of matter, and subscript 1 denotes quantities that are removed from the

disturbance in the region where x (0. Furthermore, it i_ convenient to introduce the specific

volume V = |/p , and for the intensity of the magnetic field, the quantity

B _--- H HV
p_ -- V_. ' (158)

Equations (157) will assume the following form:

v=/V; (159)

p dB fiB dV
B-- B l- /V dx / V= dx ' (160)

+ - v,)-C++ ";/v,,j=o.. (1o,,
, B, (+ )w - w, + -J_ (v= -- v_) + v v_ _ + ¢ /v _dz

(162)

d (B') x dr = o2i dz _-2 -- /_ d--_

Since disturbances of low intensity are investigated her.', the differences between the exter-
nal and internal quantities of the disturbance, p-- Pl, V -- VI, B -- B_ , etc., are small and

only up to second order terms should be taken into account. It will be assumed that 1/8 is a

quantity of the same order of magnitude as p -- p_. Theref(re, the differentiation of x changes

the order of magnitude to unity. With the above assumptions, the first term on the right hand
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side in equations (160) may be neglected. Substituting /t/1 for B in the second term, we get:

B _ B 1 = ¢B_ dV
iv_ d_' (163)

The quantity H/p = V_ B, expresses the "attachment" of the magnetic field to the medium and
persists during the passage of a perpendicular shock wave. Its change has a second order of
magnitude and reaches maximum inside of the disturbance.

Terms containing B in equations (161) and (162) are easily brought to yield:

I [B 2 B_ Bt2 _3B, dV 3BtZ

2 _ V2 2} _----(V--Vx)V, V_ /V_ dx + _ (V -- V,)2; (164)

B_ B' 2_B_ dVP_ _ (v - v,) + _ (v - v,), •
v_ = v-] v, ,v_ d_ '

cl : B' _ 2B_ dV

d_ \ V,/ = V_ ax "

(165)

(166)

Further calculations are analogous to calculations known from ordinary hydrodynamics as
shown in Ref. [213. Multiplication of equation (161) by 1/2 (V-4- Vl ) and use of relationships
(164) to (166) will show that terms containing B will cancel and

1 (V + V,) (p -- p,) -- " dru,-- w, -- ¥ 7 --_ =0. (167)

The magnetic field does not contribute to the above expression.
(167) that for terms of the lowest order of p-- Pl and S-- St:

T (S--S,)= --]-\-g-ppts d-T"

It is seen from equation

(168)

This means that the change of entropy inside the disturbance is a second-order-magnitude quan-
tity in comparison with the change of pressure, and thus does not depend upon the magnetic field.
Substituting equation (164) in equation (161) yields:

P--Pt+(/' B_)(V_V,)q_ 3B_- v_/ -f _ (v - w,)_ =
(169)

= _+_)/+ iv_j-T;-_

or, substituting in the above the quantity ' V and using equation (168), the following may be arrived
at:

-- v_ / \af/s -{- 3 v_ \ ap ]s J (p -- p,)Z +

_ av ""_I ov+[,+(;, ;v;
,(
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The leftside of this equation may be transformed to become equivalent to the following equation:

(:7:)

Here, ]' is a function of shock-wave intensity P2--Pt. Since terms only up to the second order

of magnitude of p--Pl are taken into account, then for 1"----pva null approximation may be

used. In such an approximation, p = Pl _ Pi, and the velocity of propagation of disturbance v,
in relation to a quiescent medium, is equal to the velocity of propagation of a small perturbation

whose direction is perpendicular to the magnetic field. The latter, according to equation (120),

is equal to:

v---T = l_+ u', (:72)

where u = H/V'_. Therefore, in a null approximation,

/ = p_u'. (173)

Taking into account the equations
]-/2 U_

B2 = 4--_p_= T ,
and

(°_;1= ,8 P_Cl

-62/_\_-r Is = 7" _- p_-(,,

equation (171) can be transformed into the following:

where

dp 2
dx -- "A (p--Pl)(P -- P2 ,

[(:- )( -') ,,. ., ,)]4c -_+r,, t+-_- +p_-_-+K,%

(174)

(175)

Integration of equation (174) shows the dependence of pressure in the disturbance upon the
coordinate x:

In the above, x is assumed to start in the "middle" of the disturbance, i.e., from the plane

Pl + p2 The latter shows that away from the disturbance, the pressure reaches
where p-- 2

asymptotically the value of Pl when x _ 0 , and the value 3 of pz with x _ 0. The change of

pressure takes place in a layer whose width is:

A
=_ (177)

Ps-- Pl
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Therefore, 5 is the effective width of a perpendicular shock wave in a case when its intensity is

small. It will be noted that |/5 has the orderof magnitude of quantities p --Pi, as was assumed

above. With absence of magnetic field, expressions (175) and (177) are transformed into simple

expressions (156).

The result obtained is analogous to ordinary hydrodynamics with only this difference, that

the width of the disturbance does not depend only upon viscosity and thermal conductivity of the

medium but also upon its electrical conductivity. Moreover, the width of a strong disturbance

does not necessarily have the order of magnitude of the average path of free flow of the particles

of the medium. With small conductivity, i.e., with large values of _ , the width of the distur-
bance may be significantly higher.

It should be noted, that conditions leading to the formation of a shock wave are not investi-

gated here. In cases where conductivity of the medium is so small that the condition /a_t is
c

not fulfilled, simple shock waves may be created in the medium in accordance with equation (9).

The interaction between simple shock waves and the magnetic field is weak and their widths are

equal in order of magnitude to the quantity l.

SECTION 8. PROPAGATION OF PERTURBATIONS IN STEADY STATE FLOW

Equations of magnetohydrodynamics contain solutions of the elliptical type, which describes
the entire space, and the hyperbolic type corresponding to both the incoming and outgoing waves.

In ordinary hydrodynamics the character of the solution is determined by the number M = v/c •
Flows with subsonic velocities have an elliptical character, and flows with supersonic velocities

are related to the hyperbolic type. There are two numbers in magnetohydrodynamics which de-

termine the type of solution and consequently some regions of their values for which the flow is

classified as the hyperbolic type.

An investigation is made of small perturbations of uniform steady state flow. Such pertur-

bations are described by the system of equations (112), which can be reduced to the following

equation:

D • (uV)_V _] p' = 0. (178)

Here, D/Dt -= O/Ot -_ (vV), and V is an ordinary operator. It is considered that the nonper-
turbed flow takes place along the magnetic field, i.e., v II H , the direction of which is selected

along the y axis. Also, considering that the disturbance is both two-dimensional (0/Oz = O) and
steady state (O/_t = 0) , equation (178) is reduced as follows:

where

Introducing dimensionless numbers

32 #2 ) a2_' = 0, (179)

k2 ----(c-"-- _2)(_2_ _) (180)
C2tt 2 -- C2b,$ -- 1L2/yg "

M----v and _=-, (181)
c 6

the equation for ×2 may be rewritten as:

X 2
(I-- M 2)(_--M 2)

(182)



_8

The type of motion is therefore determined bythe sign )f the coefficient x:. Thus, the equa-
tion may be classified as the elliptical type where Xa_0, and as the hyperbolic type in the op-
posite case. It is noted that elliptical solutions correspond Io the following regions of parameters

and M as shown on Figure 9:

a) M*<_; b) M2<t; M=>=:; c) t<M*<==. (183)

With the remaining values of numbers M and _ , the equation relates to the hyperbolic type.

Let us consider the problem of flow along a hard "wavy" wail, given by the equation:

where

(184)

_z

M

Fig. 9. Shaded areas denote the regions of M aJ_d=, where x= is positive.

R will be considered that the "waviness" is weak, i.e., _0k _I. Here the flow differs little
from uniform flow, and linear equations (112) or (178) ma,." be employed. It may also be noted,

that any non-uniformity on the plane boundary of the surface may be represented as superposition

of the harmonics of equation (184). Therefore, the proble_a of flow around an arbitrary small

obstacle reduces to the problem on flow around a "wavy" ,_all. For solutions, which depend on

y in the form of e tk_, equation (179) reduces to the followhtg:

(5 --k'K 'I P'-----0 (185)

and will yield the following general solution:

p' = (C_ekx_ + C2e-_x_) e*_. (186)

The remaining quantities are expressed in terms of p' in a,:cordance with equations (117)to (119):

_l/ _ C2-- p--Tp';

, . (v,-- c,)
U V pv= P';

, u'v:+c=_=--c=u = t 0_'. (187)

Vx : pu(u 2- v:) ik 0_ '

, u2v2&cry I-ctu: I 8_"

U x = U t_v2(u'-v t) ik bx "
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The condition of absence of normal component of velocity, in accordance with equation (73),
should be fulfilledon the stationary boundary surface:

i

Vz-- ikv_ --_ 0 when z == 0. (188)

The above condition gives one relationshipbetween the two unknown coefficients C l' and C s which
appear in the solution of the problem. From expressions (186) to (188), we find:

/c'xM t ,.
Cx -- C= = _ P_o. (189)

The second condition for the above coefficients is easily found, when the flow is of the ellip-
tical type. In this case, x>0 and for a limiting perturbation with x = _ it should be assumed

that C l -_ 0. Thus,

C= ----- kxM=t--M= PEo. (190)

For this case the perturbation of full pressure will be determined by:

, ,,2_ us kp_oe_l,,,x+ik_. (191)

The above expressions, analogous with ordinary hydrodynamics, permit the explanation of

the nature of instability of tangential disturbances. Indeed, assuming x = 0, a full pressure

perturbation on the boundary surface may be founc_

_2 __ V|

P' ---- -- pk_ (y). (192)
X

It follows that with u = _ v 2 , change of full pressure at the boundary takes place in the opposite

direction or out of phase in relationship to the disturbance of the surface. For example, where
the disturbance is positive the pressure will be lowered as shown in Figure 10. The above pro-
duces a force which tends to increase the disturbance of the surface. If the surface is station-

ary, as for example in the case of a tangential disturbance, then a small perturbation of a flat
surface will be increased. Such an effect has a purely hydrodynamic origin and derives from the
fact that in places of narrowing of the stream, the velocity increases and the pressure falls corre-
spondingly. Conversely, with u2_ L,2, as shown in equation(192), the change of full pressure on

the boundary surface is such that a force is produced which tends to straighten out the surface.

This follows from the fact that with a sufficiently strong field (H/4V'_- _ v) , a hydrodynamic
lessening of pressure in places of narrowing of the stream is overshadowed by the rise of the

magnetic pressure. The above is a description of elliptical flows where (x s _ 0).

Forhyperbolic flows, x = --D,, where ), is a real number, and both termsof equation(186)

are limited by x _ oo. With conditions of perturbations where (),_ 0), i.e., for perturbations
that occur inthe same direction of flow as thatof the liquid, the full pressure perturbation is de-
termined by the following expression:

.P'----- -- i _ pkEoe ik(v-xx). (193)

i=

- + -- ÷ -- + - 4-

Fig. i0. Elliptical flow.
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Fig. 11. Hyperbolic flcw.

In this case, the change of full pressure on the boundary is ,)ut of phase by _/2 with the displace-
ment of the surface. The amplitude of the perturbation remains constant in space. Equal phase
lines are inclined tothe normal at an angle 3, where tg3 ---- dy/dx _- )., as shown in Figure 11.
This means that with hyperbolic flow of a compressible conductive medium in a magnetic field,
a perturbation originating from some point is propagated only along the direction of the flow in-
side a cone with a -----90 ° -- _'. and where tg _ ---- l/k.

SECTION 9. STEADY STATE MOTION OF AN IDEAL MEDIUM

With steady statemotion (a/ at -----0) , the system oJ magnetohydrodynamic equations (24)
for a medium whose conductivitymay be considered infx_iteand whose viscosity and thermal

conductivitymay be neglected reduces to:

rot ['vH'] ----O;

div//----0;
t 1 1

Vp -t-_xxg[//rot HI -- [vrot v] -- _ Vt_ _--0,7
divgv= 0;

rVs -----0.

(194)

(195)

(196)

(197)

(19S)

Equation (194)is equivalentto the conditiom

[vH] = grad ?, (199)

where ? is an arbitrary function of the coordinate syste n. Since with an infinite conductivity

I Iv/-f] in according with equation (30), then the electric field should be devoid of

eddies: E _ -- grad c'?. Obviously, c'_ is simply the potential of the electric field. From con-
dition (199), vectors v and H in steady state motion shculd be perpendicular to the gradient of
the potential, i.e., vector lines v and X should lie on equ.potential surfaces of the electric field.

First the flow of an incompressible liquid will be investigated. From equations (194)to
(198) it follows that:

rot [_H] ---- 0; (200)

div H = 0; (201)

div v ---- 0; (202)

-LVp+ _
p _-_p[HrotH]--[vrotv]+V_-=O. (203)
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Exclusion of pressure from the above system of equations will yield:

i (]_rot HI} O. (204)rot _vrot v] -- _ =

Equations (200) to (202) and (204) determines _ and H as a function of coordinates. The
solution for the above is:

H

(205),.i_p

where one of the quantities may be an arbitrary function of the coordinates and satisfies condi-

tion (201) or {202). The pressure is determined from equation (203), or by the use of equation
(205), from the following:

which shows that along the entire space,

H 2
p _- _ -----const. (207)

Equation (205) is an exact solution of magnetohydrodynamic equations which correspond to

steady state motion of a medium along an arbitrary magnetic field with a velocity that depends on
the intensity of the field. It is convenient to represent such motion by "tubes" of current which

correspond to the force "tubes" of the magnetic field. The interaction of neighboring tubes takes

place through transverse pressure P _- p nt-]-12/8_. There are possible surfaces of tangential

disturbances upon which all quantities may undergo arbitrary step-changes as long as condition
(207) is fulfilled. In particular, flow of any form may be realized as long as it is limited by the

surface of the tangential disturbance of the field, velocity, and, in a general case, density.

Applying the criterion of stability (107) to such a discontinuous solution, the condition of stability

according to equation (205) will assume the following form:

[Y_ (k0Hl) + _ (koH2)]2_ O. (208)

Thus, dynamically stable steady state flows of a conductive medium along the force lines of

an arbitrary magnetic field are possible in the form of separate jets or streams. From the point

of view of ordinary hydrodynamics, such motion would be impossible for two reasons. First, the

motion of a stream in ordinary hydrodynamics, with the absence of any external forces, is along

a straight line. Secondly, due to the absolute instability of tangential disturbances, the stream

will rapidly become turbulent and will mix in the ambient fluid.

In the solution of equation(205), the magnetic field and the velocityof the medium are related

by the same correspondence which is found in the perturbation quantities of the wave of Ref. [7]

which is propagated along an external magnetic field. In cases where the density both inside and

outside of the stream is equal, then the solution to equation (205)may be considered as a limiting

case in a magnetohydrodynamic wave with the absence of an external magnetic field. The same

conclusions follow from the results of Section 3, above. Namely, with a continuous density, a

disturbance on both sides of which the condition (205) is fulfilled is a transition between a tangen-

tial disturbance and a magnetohydrodynamic wave. Also, by difference with the magnetohydro-

dynamic wave, the solution of equation(205)may describe a motionwhere the density goes through

a discontinuity: for example, motion of a stream in a medium of a different density. In addition,

the solution to equation (205) can be applied, under some other conditions, to a compressible
medium.

The steady state motion of a compressible medium takes place according to equations (194)

to (198). The conditions under which these equations permit a solution in the form of equation

(205) are here established. Such a solution always satisfies equation (194). Substituting equa-
tion (205) in equation (197) yields:
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Since divH = 0, then

H _p=O.
div (n ]/-p) = V'_-div H" + _-_-p

HVO = 0, (209)

i.e., the density of the medium should remain constant along force lines of the magnetic field.

Taken with equation (198) this denotes that along the force lines all remaining thermodynamic
functions should be constant:

/-/Vp ---- 0. (210)

Also, equation (196) will be reduced to the condition:

or, by considering equation (210):

HVH 2 -----0. (212)

It may be deducted from the above that the intensity of the r_agnetic field does not change along

the force tubes, that the cross section of force tubes is cons.ant, and that the motion along them

takes place with a constant velocity. Thus, in a compressible medium, the solution to equation
(205) may be realized in the form of uniform motion of the medium along force tubes of the mag-

netic field, the cross section of which does not change. All remaining conclusions, including the

possibility of occurrence of tangential disturbances, remain the same as for an incompressible
medium.
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SECTION 10. POSSIBLE ASTROPHYSICAL APPLICATIONS

At the present time, the information available on the dyn.'.xnics of an ionized gas in amagnetic
field is quite limited. According to the evaluations of Ref. [9], magnetohydrodynamic effects

should play an important role in the dynamics of interstella: gas, stellar atmospheres, and in

particular the atmosphere of the sun. The investigation of motion of interstellar gas masses is

made difficult by the fact that notable changes in these object._ take place very slowly, which does

not permit the gathering of a sufficient quantity of data. On tie other hand, the atmosphere of the

sun presents a different picture. Here, the motions develo) relatively fast, giving rise to the

possibility of gathering sufficient data during relatively short periods of time and of observing the

character of these motions. In this respect, most promising are investigations of solar protu-

berances, which are characterized by gaseous formations on the boundary of the chromosphere

and the corona, and which in turn result from the activity of :he sun.

The phenomenon of protuberances is very complicated since it develops in a gravitational

field in the region of large non-uniformities of temperature snd density. It is enough to say that

the adopted classification of protuberances on the basis of their external signs and solar spots

(Ref. [22]) includes six classes and seventeen sub-classes. However, as shown by Refs. [23]

and [24], three basic classes may be distinguished in the pr)tuberances: 1) eruptive; 2) orderly

or electromagnetic; and 3) chaotic or turbulent. Detailed description of these classes shows that

the dynamics of protuberances cannot be explained from the point of view of ordinary hydrody-

namic concepts. Therefore, a hypothesis was proposed to determine the function of the electro-

magnetic field. This was done in Refs. [23] and [24]. The arguments in favor of this hypoth-
esis are as follows:

1) trajectories of the protuberances quite often have a regular form which resembles the

picture of force lines of a magnetic pole;
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2) Protuberances are closely related to sunspots, which possess strong magnetic fields;

3) complex forms of protuberances remain for extended periods of time in an equilibrium
which does not appear to be hydrostatic.

The electromagnetic hypothesis has been made in aquite general form and there are no con-

crete results. It is shown below that the use of this hypothesis in the framework of magnetohydro-
dynamics permits the explanation of some characteristic motions of protuberances and the eval-
uation of related magnetic fields.

At the present time, there is an absence of data permitting any evaluation of the sources

which cause the appearance of protuberances. The formation of protuberances is closely related

to solar activity and apparently may be explained by processes taking place in the inner regions
of the sun. Therefore, the discussion will be limited to the evaluation of some characteristics of
motion of the protuberances without the investigation of their sources.

Since protuberances develop in those layers of the sun's atmosphere possessing high conduc-
tivity (8 m J013) and, in addition, are related to solar spots, which in turn possess strong mag-
netic fields (up to 3500 oersteds), it may be expected that their motion occurs in accordance with
the laws of magnetohydrodynamics.

The protuberances of the second class are easiest to interpret in terms of the "magnetic

hypothesis". Such protuberances possess the following properties as listed by Ref. [24_:

1) the motion of matter takes place longitudinally along curved, discreet trajectories that
are fixed in space;

2) the direction of the motion depends only on the distribution of such trajectories and does
not have a direct relationship to the upward or downward direction relative to the surface of the

sun;

3) such trajectories exist for prolonged periods of time without noticeable changes, and the
motion along them is repeated;

4) in most cases the motion along such trajectories is uniform;

5) the cross section of streams and jets is approximately uniform along their length.

These properties correspond to the properties found in the last section for a steady state

solution of magnetohydrodynamic equations. Actually, in compressible medium, such as the
solar atmosphere, the solution

H

-- _ (213)

exists, if the density and the absolute values of the magnetic field intensity and of the velocity do

not change along the force lines. This means that the cross section of the stream, correspond-
ing in its form to equation (213)and corresponding to the force tube of the magnetic field, remains

unchanged and the motion is uniform. This, in turn, corresponds to the properties of the inves-

tigated protuberances. The possibility of analyzing this as a steady state phenomenon follows

from the above-mentioned property 3) of repeatability of motion along the same trajectories.

It will be noted that equation (213) shows only general properties of the dynamics of protu-

berances. Such phenomena as burnout of protuberances by radiation of the corona, their lumi-

nescence, etc. are not considered here. The latter are secondary effects, related to the dis-

placement of matter from one layer of the solar atmosphere to another. It is important to note

that calculations of the velocity of protuberances that are based upon measurement of velocity of

nodes and other luminescent details may not correspond to the actual velocities of the matter, in

cases where the process of illumination is propagated along the trajectory with a velocity differ-
ent from the velocity of the matter.
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In real conditions, the requirement that the density and intensity of the magnetic field should

be constant along the stream is too severe. However, it _my be expected that small changes in
this condition will not radically change the character of the motion.

Expression (213) permits the evaluation of the magnetic field intensity related to protuber-

ances of the investigated class. Assuming the average density of matter in protuberances to be

10-14 gm/cm 3, it will be found that, for a steady state motion of matter along force lines of mag-

netic field,with observed velocity of 30 to 300 km/sec, the intensity should be equal to 1 to 10

oersteds. R follows from the observations of Ref. [25], that the surface of the sun containslocal

fluctuations of the magnetic field that reach 30 oersteds. It is possible that these chaotic mag-
netic fields are related to the motion of the protuberances.

An important property of solutions (213) for streams or jets is the stability of the surface

separating the stream from the remainder of the gaseous masses during abrupt changes of

velocity. Since such a surface may be considered a surface of a tangential disturbance, its

stabilityfollows from the results of Sections 5 and 6. The stabilizing action of the magnetic field,
explains the fact that jets and streams observed in the protuberances conserve their form for a

long period of time. From the point of view of ordinary hydrodynamics, however, they should
be transformed intoturbulent streams in a matter of a short time and should mix with the ambient
medium.

Thus the steady state solution of magnetohydrodynamic equation (213), taken with the results

of investigations of the stabilityof tangential disturbances permits the explanation of a number

of characteristic features of the dynamics of protuberances. Until recently, only protuberances
of the second class were investigated, due to the regular, flow-like motion of matter. In corre-

spondence with the above, it may be assumed that protuberances of the third class are chaotic or

turbulent and develop in a region of weak magnetic field. Their motion, in accordance with

ordinary hydrodynamics, should have turbulent character. The properties of eruptive pro-

tuberances are probably determined by the conditions of their appearance, which are not in-

vestigated here.

C ONC LUSIONS

The investigation of magnetohydrodynamic disturbanc,._s presented in this work leads to the

following basic results:

1. There are four types of disturbances in magnetoh:,drodynamics. These depend on the

character of step-changes of velocity and intensity of the f;eld on the surface of the disturbance:

tangential, perpendicular shock wave, inclined shock wave and magnetohydrodynamic wave.

2. All types of magnetohydrodynamic disturbances are related by mutual transitions, so

that with a continuous change of conditions of motion, a disturbance of one type may be trans-
formed into a disturbance of another type. Such transition3 may take place as a result of small

perturbations of the surface.

3. A criterion has been obtained which determines tie stability of tangential disturbances

in an incompressible medium. This criterion shows that a sufficiently strong magnetic field,

parallel to the direction of the motion of the medium, stabilizes the tangential disturbance.

4. Regions of parameters have been found that characierize tangential velocity disturbances

in a compressible medium with the presence of magnetic field. In such cases the surface distur-
bance is stable.

5. In both compressible and incompressible media, the stabilityof motion takes place when

the density of the magnetic energy reaches a value equal to _he density of the kinetic energy of the
relative motion of the medium.
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6. An expression for the width of a perpendicular shock wave of low intensity has been ob-
tained. This expression shows that low conductivity of the medium may lead to a significant

widening of the shock wave in a strong magnetic field.

7. A problem on the flow around smallobstacles in magnetohydrodynamics was investigated.

It was shown that the character of propagation of perturbations in steady state flow in a com-

pressible medium is determined by two dimensionless parameters: v/c and H/cy"4- _. De-

pending upon the values of these dimensionless parameters, the flow may be classified as either

the elliptical or the hyperbolic type.

8. It was shown that magnetohydrodynamic equations for incompressible media permit an

exact solution of steady state equations of the form: v = 4-H/4_r_,wherep -_ const and H is
an arbitrary magnetic field. Such solutions exist for a compressible'medium with the conditions

.HV_ --- 0 and HVH _ = O.

9. The steady state solutions to magnetohydrodynamic equations taken with the results of

investigation of stability of tangential disturbances permit the explanation of some characteristics

of motion in the solar atmosphere, i.e., regular motion in solar protuberances.

In conclusion, I should like to express my deep appreciation to Professor S.Z. Belen'ko

for the introduction of the topic of this problem and for his valuable advice in the evaluation of
the results.
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